
 

  
Abstract—The BTeV experiment was a collider based high 

energy physics (HEP) B-physics experiment proposed at 
Fermilab. It included a large-scale, high speed trigger/data 
acquisition (DAQ) system, reading data off the detector at 500 
Gbytes/sec and writing to mass storage at 200 Mbytes/sec. The 
online design was considered to be highly credible in terms of 
technical feasibility, schedule and cost. This paper will give an 
overview of the overall trigger/DAQ architecture, highlight 
some of the challenges, and describe the BTeV approach to 
solving some of the technical challenges.  
 
At the time of termination in early 2005, the experiment had 
just passed its baseline review. Although not fully 
implemented, many of the architecture choices, design, and 
prototype work for the online system (both trigger and DAQ) 
were well on their way to completion. Other large, high-speed 
online systems may have interest in the some of the design 
choices and directions of BTeV, including (a) a commodity-
based tracking trigger running asynchronously at full rate, (b) 
the hierarchical control and fault tolerance in a large real time 
environment, (c) a partitioning model that supports offline 
processing on the online farms during idle periods with plans 
for dynamic load balancing, and (d) an independent parallel 
highway architecture. 
 
 

Index Terms—Data acquisition, large-scale systems, real 
time systems, triggering.  
 

I. INTRODUCTION 
HE proposed BTeV detector  [1] consisted of 6 
separate subdetectors: pixel, silicon strips, straw tubes, 

RICH, EMCAL and muon with the pixel detector 
dominating the channel count (see Table 1).   

 

Table 1. Channel Count 

Subsystem Channels DCB Subsystems 
Pixel 23M 10 
Strips 118K 2 
Straws 54K 6 
RICH 144K 4 
EMCAL 10K 2 
Muon 37K 4 
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The overall detector was designed to run with a 396nsec 

(2.5 MHz) beam collision (a.k.a crossing or event) rate. The 
timing system was designed to deliver a  7.5  MHz clock to 
allow for calibration data to be taken between crossings. 
See Table 2 for the data rates at each trigger level.  

Table 2. Event Rates 

 Frequency Event Size Data Rate 
Into L1 2.5 MHz 200 KB 500 GB/sec 
Into L2/L3 50 KHz 250 KB 12.5 GB/sec 
Into 
archival 

2.5 KHz 80 KB 200 MB/sec 

 
Fig. 1 shows the overall architecture of the BTeV trigger 

and DAQ.  
There are several points in Fig. 1 worth noting. First, the 

detector was unique in that all the data was brought off the 
detector and digitized in subdetector-specific front end 
boards. This data was sent via point to point copper cable to 
data combiner boards (DCBs) before being sent to the first 
level trigger over optical links. The DCB design was 
common across subdetectors1. This architecture benefited 
the design in that 1) much of the L1 trigger could be done 
in software which allowed for many commodity 
components 2) the DCBs provided a single entry point into 
the trigger/DAQ that could be centrally designed and 
maintained, reducing the long term support load.  

Secondly, data collected in the DCBs were routed to 8 
independent, parallel paths called highways. This design 
reduced the control overhead on each particular highway 
and grouped data coming out of the L1 buffers into larger 
packets for better network performance.  

Thirdly, the Level 2 and 3 trigger (L2 and L3, 
respectively) decisions were made on the same L2/L3 farm. 
Lastly, the baseline of the BTeV architecture defined 
logging data to large disk farms using dCache[2] as the 
underlying data  storage support software. 

The following sections will spell out some of the features 
of the online system: highway architecture (II), fault 
tolerance (III), and partitioning (IV). 

 

 
1 More precisely, the output to the high speed optical links was in 

common. There were two variants to the input side. One for FPIX front 
end boards (Pixel and Strip detectors) and one for nonFPIX boards. See 
Fig. 2 for a more detailed layout of the DCB.  
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II. HIGHWAY ARCHITECTURE 

A. DCB 
 
The DCBs were a custom component and interface 

between the subdetectors’ front end electronics and the 
common data readout system. Two flavors of this board 
existed – one for the FPIX readout (Pixel and Strip 
detectors) and one for everyone else. For the purposes of 
this paper, they can be considered the same with only a 
variation on the configuration of the input ports and rates. 

 DCBs were the place in the online architecture that split 
the detector data into highways – eight parallel and 
independent data streams each processing 1/8th of the 
detector data. The original DCB design routed a crossing at 
a time. This resulted in a complex routing table algorithm to 
factor out any periodicity in the tevatron. The DCB routed 
data for a given crossing to one and only one highway.    

Fig. 2 shows the data and control flow in/out of a DCB. 
Each board contained a commercial CPU and fast Ethernet 
interface for control and low speed data readout for 
diagnostics and commissioning. The DCBs received precise 
clock information from the timing system We imagined 
being able to reset/reconfigure “live” on a future crossing. 
E.g, if a catastrophic highway failure occured, the DCBs 
could be sent a control command to route to 7 highways 
instead of 8 starting at crossing number “N".  

We were investigating the possibility of routing data a 
turn at a time. This alternative approach would simplify the 
routing, but increase the length of time data would live in 
the DCB, exposing it to a higher single event upset rate. It 
would also mean that data from FPIX sources would need 

to be time ordered, a functionality that was being designed 
into the pixel L1 trigger. Turn routing also had the 
advantage of being self balancing. That is, the traffic 
carried over a single highway was the same (on average) 
for each of the highways. This was true no matter how 
many highways were in service. If a highway dropped out, 
the remaining highways would have absorbed the load 
evenly. 

 

 
B. L1 Trigger 

 
One particular highlight of the BTeV design is a 

commodity based L1 tracking trigger running 
asynchronously at full rate. The L1 trigger functionality 
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Figure 1. Online Architecture 



 

will only be summarized here as several aspects of it are 
described in greater detail in other papers [3],[4],[5]. 

Beam crossing data from low-level FPGA segment 
trackers were routed through a switching fabric to L1 
worker nodes. L1 worker nodes were commodity 
processors similar to L2/L3. Each of the highways 
contained one L1 Infiniband switch. The segment tracker 
nodes (about fifteen) served as input to the switch. The data 
at the inputs are distributed to a small farm (about thirty-
three) of L1 worker nodes. Data throughput simulations 
indicated that the output from each of the segment trackers, 
including excess capacity, totaled about 167 MB/s. The 
estimated total capacity needed per highway on the input 
side of the switch was 2.5 GB/s. Commercial off-the-shelf 
Infiniband switches were capable of handling this load. Due 
to fixed message latencies (between 4 to 8 us) in this type 
of switching fabric, small messages led to undesirable 
performance. Almost all the work of transferring data 
through the switch was done by the HCA, leaving the CPU 
free to processing the crossing data. The Infiniband 
switching fabric had enough capacity to handle the 
additional load necessary to send L1 worker-node results to 
Global Level-1 (GL1).   
 

C. Level 1 Buffers 
 

Data from the DCBs were routed over point to point 
optical links into L1 buffers, another custom electronics 
component. Each L1 Buffer could communicate with 24 
DCBs (two crates worth). It’s this unit that we will talk 
about in the partitioning section regarding resource 
reservation.  

The primary responsibility of an L1 buffer was to buffer 
the detector data for a long enough time to make an L1 
trigger decision and keep accepted events available until 
transferred to the L2 trigger. There were 24 L1 buffers per 
highway with 3G of memory each for an aggregate total of 
~0.5 TBytes of memory, or roughly 1 second of data.  

Data which were needed for trigger decisions (from pixel 
and muon detectors) were fed into the segment 
preprocessors in the L1 trigger. The L1 worker nodes also 
function as L1 Buffers serving L2 the results from L1 
trigger algorithms.  

Data entered the L1 buffer though an input FPGA and 
were stored in a circular buffer. After an L1 accept was 
received, all data for that subevent were copied into a 
smaller 1GB memory area that was used to transfer 
accepted events to the downstream L2 trigger farm.  No 
special information was needed from the ITCH 
(Information Transfer Control Hardware) regarding L1 
rejects; the data was simply overwritten in the circular 
buffer.  

 

D. L2/L3 Trigger 
 

From the L1 buffers, data were sent over a GBit Ethernet  
link to the to the L2/L3 trigger farm. The L2/L3 trigger 
software was running on the same hardware with the 
distinction being which physics algorithm would have been 
currently active. L2 was not required to make the event 
persist – it moved directly through memory to the L3 
algorithms. L3 was responsible for the final event building.  

The farm consisted of commodity processors and was 
also split into highways.  Highways were self contained 
with lower bandwidth channels connecting them. Each 
highway consisted of 96  worker nodes, each with dual 
CPUs.  

 To reduce the control overhead and complexity of the 
software, we designed the event building switch with 
enough capacity to send a complete event to each L2 node. 
Each CPU box was referred to as a worker node. Worker 
nodes would declare themselves to a particular partition, ie, 
trigger list (see section on partitioning) and notify the ITCH 
when they were ready for data. The ITCH would assign 
them a particular crossing number. All data from that 
crossing would be sent to that worker node.  

Worker nodes themselves were grouped into manageable 
units in a highway. Each group was controlled by a regional 
manager consisting of 12 worker nodes. A regional 
manager was responsible for configuring its associated 
worker nodes, fanning out control commands and 
collecting status, caching DBMS data (eg, various versions 
of the trigger algorithms and calibration data),  and 
handling regional faults.  

 

III. FAULT TOLERANCE 
 
The BTeV trigger performed sophisticated computations 

using  large ensembles of FPGAs and conventional  
microprocessors. This system would have had on the order 
of 5000 computing elements and many network switching 
elements. The need for fault-tolerant and fault-adaptive 
software, as well as flexible computing techniques and 
software to manage this huge computing platform had been 
identified as one of the more challenging aspects of this 
project.  

As a response to this challenge, the Real Time Embedded 
Systems (RTES) project group was formed and funded 
through a 5 year NSF grant.  This research group is a 
collaborative effort between electrical engineers, computer 
scientists and high energy physicists. The group is 
researching ways to increase the reliability of high-
performance, heterogeneous, real-time systems. 

 The BTeV trigger was used as a model system for  
RTES. One reason for this is because of the overall 
asynchronous nature of this complex system, where  no 
"hard failure" occurs if a specific computation is not 



 

delivered in time; only a temporary degradation of the 
performance is observed.  Example observed failures are 
computations takes a bit longer than expected, or, bunch 
crossings declared lost, or "rejected" if the computation 
takes too long.  Our understanding of the nature of 
interactions indicated that timeouts are expected to occur.    

The RTES project has embraced a multi-aspect approach  
to large, real-time system modeling and fault specification 
and adaptation. Model integrated computing methods are 
used within a graphical modeling environment to describe 
system components and their physical relationships, 
messages exchanged by software processes, run control 
state machines, user interface definitions, and custom 
ARMOR elements. Metamodels define the domain-specific 
graphical languages for each of these. ARMORs (adaptive 
reconfigurable mobile objects for reliability) provide 
intrinsically reliable high level process oversight, with the 
ability to stop/restart applications in-place (on the same 
node), or to relocate the work to an available alternative 
resource. VLAs (very lightweight agents) provide low 
impact, low level detection of fault conditions. 

These techniques have been demonstrated in a prototype 
of the BTeV L1 embedded processor farm, as well as in a 
prototype  of the L2/3 commodity computer farm [6]. 
 

IV. PARTITIONING 
 
Partitioning of the detector was defined to be running 

multiple independent data acquisition systems in parallel.  
This is not to be confused with the highway concept which 
was the physical implementation of parallel data streams. A 
partition is a logical concept and would have spanned 
across highways.  

The value of partitioning, and when to partition the 
detector are different depending on the phase of the project 
i.e., partitioning needs during commissioning (testing the 
subdetectors in parallel) may be different than when testing 
new L3 trigger algorithms while taking physics quality 
data. Partitioning allowed spare cycles on the online trigger 
farm(s) to be used for other offline processing when beam 
is off or luminosity low without drastic change to the 
system configuration. The BTeV L2/L3 farm contained 
significant processing powe, and partitioning could provide 
a means to increase the utilization of this resource.  

Partitioning was strictly a logical concept which needed 
to be mapped onto the physical implementation of the 
online system. The online DAQ/trigger was to be 
constructed in 2 stages with roughly 50% of capacity at 
each stage. The first stage consisted of 4 highways. The 
second  stage was installed the next fiscal year. Even within 
a stage, individual highways were commissioned one at a 
time. The logical concept of partitioning needed to support 
running multiple partitions on a single highway (when only 
1 was constructed) as well as the final system with 8 

highways 
The parallel highway architecture and dynamic reloading 

of DCB routing tables allowed for much flexibility in 
configuring partitions and rules were being established to 
limit to scope, function, and definition of  partitioning. We 
had not reached a consensus on many details regarding 
partitioning at the time of termination. What we will 
discuss here are some of the ideas and the directions in 
which we were headed.  

First we imagined that running a partition involved the 
following steps: 1) selecting/reserving [a subset of] 
electronics to be read out 2) Defining how much L2/L3 
trigger processing power was needed and reserving those 
resources, 3) initializing the hardware, 4) collecting the 
data, and 5) freeing the resources 

One of our original ideas for a possible use case was  for  
a physicist to select the strips and straw front end crates, 
request 50 Mflops of L2/L3  nodes for processing, and then 
let software map this out onto a physical implementation. 
Depending on how many nodes might be needed, the layout 
may be to run on a single highway or to route to n 
highways. We rejected this idea because it could have been 
confusing to the end user to understand exactly where data 
is flowing. We ultimate developed a proposal that was a 
balance between flexibility and ease of understanding for 
the end user.  

This approach imposed the following constraints: a) the 
hardware for the L1 trigger on a particular highway could 
not be partitioned, but could hold trigger tables for multiple 
partitions b) the smallest source unit that could be reserved 
was a single L1 buffer which corresponded to as many as 
24 DCBs c) a worker node could belong to one and only 
one partition d) L2 worker nodes connected to the same 
regional manager could not span [online] partitions.  

Because of the sheer number of electronics involved in 
the Trigger/DAQ, we were developing the idea of the L1 
trigger and active highways always being available as a 
shared resource. A human run coordinator would establish 
the overall online configuration for a period of time 
(day/week/month) and coordinate the data taking runs 
during this period. This person would have the 
understanding of which configurations could support 
multiple overlapping runs. This stable configuration period 
had a fixed and predefined set of allowable highways. 
Subdetector groups still had to select the specific 
electronics to read out. These front end electronics could be 
reserved for read/write or readonly (ie, can’t be reset or 
initialized). It was the responsibility of the run coordinator 
to schedule the detector so that users could get write access 
as needed. Partitions could come and go then, by 
adding/removing trigger tables as necessary.  

An example would be the run coordinator making 4 
highways available for the next two days. The pixel group 
could reserve the pixel front end electronics and associated 
L1 buffers for read/write, and load the pixel trigger table. 
Crossings would be distributed to all 4 highways. Online 



 

software would assign specific L2/L3 nodes to this partition 
as constrained by the run coordinator. The silicon strip 
group could come and reserve silicon electronics for 
read/write and pixel for read only and load a second set of 
trigger tables. Again, the software would assign L2/L3 
worker nodes specifically to this partition. If a given 
crossing passed the L1 trigger for both partitions, it could 
be routed to worker nodes in both partitions or split 
between the two partitions in a predefined scalar. This was 
also still being discussed in the collaboration.  

Partitioning became an obvious solution when discussing 
the problem of how to utilize spare online cycles for 
offline. The pure Computer Scientists involved in RTES 
promoted real time scheduling on the worker nodes to 
maximize CPU utilization, but they were outweighed by the 
opinion that a particular worker node should be single 
tasking for an operation the was more manageable and 
easier to understand..  

Nodes could manually be moved between online and 
offline partitions, but would be automatically shifted to 
offline as luminosity in the Tevatron dropped. The 
automatic decision to migrate nodes between partitions 
would be influenced by metrics measured by RTES as well 
as an overall luminosity profile that would be loaded at the 
start of a run.  

V. CONCLUSION 
 

Thanks to the efforts of many talented people in the 
collaboration and at the lab as well as extremely helpful 
comments from the many reviews, the DAQ and trigger 
groups in BTeV were able to develop a highly credible 
online architecture. This architecture was believable in 
terms of cost and schedule with well understood, and 
mimimal risks.  

Key elements in the success of the design were 
developing an architecture which included a) the split into 
independent highways which reduced individual bandwidth 
requirements, b) maximized the number of commodity 
components (switching fabric, trigger farms) which 
lowered cost (especially labor) and risk and well as allowed 
for a more plug and play upgrade path, c) minimized the 
variability between custom boards, i.e.,, the DCBs were 
common across all detectors, and d) capitalized on using 
large amounts of computing resources during periods of 
accelerator downtime.   
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